# How stuff works-Football/Rollercoaster Essay

Submitted By bayzith
Words: 878
Pages: 4

When you throw a football across the yard to your friend, you are using physics. You make adjustments for all the factors, such as distance, wind and the weight of the ball. The farther away your friend is, the harder you have to throw the ball, or the steeper the angle of your throw. This adjustment is done in your head, and it's physics -- you just don't call it that because it comes so naturally.
Physics is the branch of science that deals with the physical world. The branch of physics that is most relevant to football is mechanics, the study of motion and its causes. We will look at three broad categories of motion as they apply to the game:
Delivery of a football through the air
Runners on the field
Stopping runners on the field
Watching a weekend football game could be teaching you something other than who threw the most passes or gained the most yards. Football provides some great examples of the basic concepts of physics -- it's present in the flight of the ball, the motion of the players and the force of the tackles. In this article, we'll look at how physics applies to the game of football.
The purpose of the coaster's initial ascent is to build up a sort of reservoir of potential energy. The concept of potential energy, often referred to as energy of position, is very simple: As the coaster gets higher in the air, gravity can pull it down a greater distance. You experience this phenomenon all the time -- think about driving your car, riding your bike or pulling your sled to the top of a big hill. The potential energy you build going up the hill can be released as kinetic energy -- the energy of motion that takes you down the hill.
Once you start cruising down that first hill, gravity takes over and all the built-up potential e­nergy changes to kinetic energy. Gravity applies a constant downward force on the cars.
The purpose of the coaster's initial ascent is to build up a sort of reservoir of potential energy. The concept of potential energy, often referred to as energy of position, is very simple: As the coaster gets higher in the air, gravity can pull it down a greater distance. You experience this phenomenon all the time -- think about driving your car, riding your bike or pulling your sled to the top of a big hill. The potential energy you build going up the hill can be released as kinetic energy -- the energy of motion that takes you down the hill.
Once you start cruising down that first hill, gravity takes over and all the built-up potential e­nergy changes to kinetic energy. Gravity applies a constant downward force on the cars.
The purpose of the coaster's initial ascent is to build up a sort of reservoir of potential energy. The concept of potential energy, often referred to as energy of position, is very simple: As the coaster gets higher in the air, gravity can pull it down a greater distance. You experience this phenomenon all the time -- think about driving your car, riding your bike or pulling your sled to the top of a big hill. The potential energy you build going up the hill can be released as kinetic energy -- the energy of motion that