Juvenile Diabetes Essay

Submitted By lindseyjvance
Words: 3812
Pages: 16

The Fluidity of Juvenile Diabetes.
Gender Norms & Racial Bias in the Study of the Modern "Juvenile Diabetes" Diabetes mellitus type 1 is a form of diabetes mellitus that results from autoimmune destruction of insulin-producing beta cells of the pancreas. The subsequent lack of insulin leads to increased blood and urine glucose. The classical symptoms are polyuria, polydipsia, polyphagia, and weight loss.
Incidence varies from 8 to 17 per 100,000 in Northern Europe and the U.S. with a high of about 35 per 100,000 in Scandinavia to a low of 1 per 100,000 in Japan and China.
Most people who develop type 1 are otherwise healthy. Although the cause of type 1 diabetes is still not fully understood, it is believed to be of immunological origin.
Type 1 can be distinguished from type 2 diabetes via a C-peptide assay, which measures endogenous insulin production.
Type 1 treatment must be continued indefinitely in all cases. Treatment should not significantly impair normal activities but can be done adequately if sufficient patient training, awareness, appropriate care, discipline in testing and dosing of insulin is taken. However, treatment remains quite burdensome for many people. Complications may be associated with both low blood sugar and high blood sugar, both largely due to the nonphysiological manner in which insulin is replaced. Low blood sugar may lead to seizures or episodes of unconsciousness, and requires emergency treatment. High blood sugar may lead to increased fatigue and can also result in long-term damage to organs.
Signs and symptoms
The classical symptoms of type 1 diabetes include: polyuria, polydipsia, Xerostomia, polyphagia, fatigue, and weight loss.
Cause
Diabetes type 1 is induced by one or more of the following: genetic susceptibility, a diabetogenic trigger and/or exposure to a driving antigen.
Genetics
Type 1 diabetes is a polygenic disease, meaning many different genes contribute to its onset. Depending on locus or combination of loci, it can be dominant, recessive, or somewhere in between. The strongest gene, IDDM1, is located in the MHC Class II region on chromosome 6, at staining region 6p21. Certain variants of this gene increase the risk for decreased histocompatibility characteristic of type 1. Such variants include DRB1 0401, DRB1 0402, DRB1 0405, DQA 0301, DQB1 0302 and DQB1 0201, which are common in North Americans of European ancestry and in Europeans.
Environmental
Environmental factors can influence expression of type 1. For identical twins, when one twin had type 1 diabetes, the other twin only had it 30%–50% of the time. Despite having exactly the same genome, one twin had the disease, where the other did not; this suggests environmental factors, in addition to genetic factors, can influence disease prevalence. Other indications of environmental influence include the presence of a 10-fold difference in occurrence among Caucasians living in different areas of Europe, and a tendency to acquire the incidence of the disease of the destination country for people who migrate. proposes that type 1 diabetes is a virus-triggered autoimmune response in which the immune system attacks virus-infected cells along with the beta cells in the pancreas. The Coxsackie virus family or rubella is implicated, although the evidence is inconclusive. In type 1, pancreatic beta cells in the islets of Langerhans are destroyed, decreasing endogenous insulin production. This distinguishes type 1's origin from type 2. The type of diabetes a patient has is determined only by the cause—fundamentally by whether the patient is insulin resistant or insulin deficient without insulin resistance .
This vulnerability is not shared by everyone, for not everyone infected by the suspected virus develops type 1 diabetes. This has suggested presence of a genetic vulnerability and there is indeed an observed inherited tendency to develop type 1. It has been traced to particular HLA genotypes, though the