Variables Affecting Human Arterial Pressure And Pulse Rate

Words: 1979
Pages: 8

Variables Affecting Human Arterial Pressure and Pulse Rate


The woozy feeling when standing up too quickly. After going for a run, feeling as if one more beat and the heart would project itself out of the chest. Or quite the opposite and being in a very relaxed state. These are all changes one experiences at some time or another. What causes the different feelings and how each variable affects pulse rate and blood pressure has many wondering. Because of this curiosity, an experiment was performed to get some answers. The purpose of the experiment is to see how different variables affect pulse rate and blood pressure. Before starting the experiment, self educating
…show more content…
Cross referencing the given data with the hypothesis, it was found that the results didn’t fully match with the hypothesis. The blood pressure did, in fact, decrease due to the relaxation state that the subject was in. On the other hand, the pulse rate stayed the same. Reflecting on that and looking at the variables in the environment, it could be said that the subject wasn’t in a state of full relaxation. The subject was instructed to recline on a cold lab table with other subjects and groups in the room. It is possible that the discrepancy in this experiment was the environment in which the subject was instructed to recline and relax. After reclining, the subject was instructed to stand up quickly. Right when the subject stood up, blood pressure and pulse rate were recorded. It was collected that the subject’s blood pressure was 132/58 mm Hg and pulse rate of 62 bpm. Relating back to the hypothesis, it was said that the arterial pressure and the pulse rate would decrease. The results obtained and the hypothesis did not match. Further dissecting why the data didn’t match the hypothesis, it was discovered that because the subject stood up very quickly, 500 mL or more travels down into the legs. It was thought, due to that reason it would mean less stroke volume for the ventricle to pump. Looking at it from a different angle,