M Theory Research Paper

Submitted By Swandic1
Words: 3399
Pages: 14

M-Theory: The Mother of all SuperStrings
An introduction to M-Theory
Every decade or so, a stunning breakthrough in string theory sends shock waves racing through the theoretical physics community, generating a feverish outpouring of papers and activity. This time, the Internet lines are burning up as papers keep pouring into the Los Alamos National Laboratory’s computer bulletin board, the official clearing house for superstring papers. John Schwarz of Caltech, for example, has been speaking to conferences around the world proclaiming the “second superstring revolution.” Edward Witten of the Institute for Advanced Study in Prince- ton gave a spell-binding 3 hour lecture describing it. The after- shocks of the breakthrough are even shaking other disciplines, like mathematics. The director of the Institute, mathematician Phillip Griffiths, says, “The excitement I sense in the people in the field and the spin-offs into my own field of mathematics … have really been quite extraordinary. I feel I’ve been very privileged to witness this first hand.”
Cumrun Vafa at Harvard has said, “I may be biased on this one, but I think it is perhaps the most important development not only in string theory, but also in theoretical physics at least in the past two decades.” What is triggering all this excitement is the discovery of something called “M-theory,” a theory which may explain the origin of strings. In one dazzling stroke, this new M-theory has solved a series of long-standing puzzling mysteries about string theory which have dogged it from the beginning, leaving many theoretical physicists (myself included!) gasping for breath. M-theory, moreover, may even force string theory to change its name. Although many features of M-theory are still unknown, it does not seem to be a theory purely of strings. Michael Duff of Texas A & M is already giving speeches with the title “The theory formerly known as strings!” String theorists are careful to point out that this does not prove the final correctness of the theory. Not by any means. That may make years or decades more. But it marks a most significant breakthrough that is already reshaping the entire field.
Parable of the Lion
Einstein once said, “Nature shows us only the tail of the lion. But I do not doubt that the lion belongs to it even though he cannot at once reveal himself because of his enormous size.” Einstein spent the last 30 years of his life searching for the “tail” that would lead him to the “lion,” the fabled unified field theory or the “theory of everything,” which would unite all the forces of the universe into a single equation. The four forces (gravity, electromagnetism, and the strong and weak nuclear forces) would be unified by an equation perhaps one inch long. Capturing the “lion” would be the greatest scientific achievement in all of physics, the crowning achievement of 2,000 years of scientific investigation, ever since the Greeks first asked themselves what the world was made of. But although Einstein was the first one to set off on this noble hunt and track the footprints left by the lion, he ultimately lost the trail and wandered off into the wilderness. Other giants of 20th century physics, like Werner Heisenberg and Wolfgang Pauli, also joined in the hunt. But all the easy ideas were tried and shown to be wrong. When Niels Bohr once heard a lecture by Pauli explaining his version of the unified field theory, Bohr stood up and said, “We in the back are all agreed that your theory is crazy. But what divides us is whether your theory is crazy enough!”
The trail leading to the unified field theory, in fact, is littered with the wreckage of failed expeditions and dreams. Today, however, physicists are following a different trail which might be “crazy enough” to lead to the lion. This new trail leads to superstring theory, which is the best (and in fact only) candidate for a theory of everything. Unlike its rivals, it has survived every blistering mathematical