Essay on Hot Data Storage Technologies for 2013

Submitted By crystalfox
Words: 2957
Pages: 12

Hot data storage technologies for 2013
Andrew Burton, Rich Castagna, Todd Erickson, John Hilliard, Sonia Lelii, Dave Raffo and Carol Sliwa * E-Mail
Top of Form

Bottom of Form * Print * A * AA * AAA * LinkedIninShare47 * Facebook * Twitter * Share This * RSS * Reprints

This article can also be found in the Premium Editorial Download "Storage magazine: Which data storage technologies will reshape storage shops in 2013?."
Download it now to read this article plus other related content.
These six data storage technologies will play pivotal roles in transforming data centers in 2013. We also review our hot storage tech predictions from last year.
Our annual hot data storage technologies forecast cites the practical applications of techs that are available and ready now, rather than oohing and ahing over a list of science projects that may never leave the lab. That's not to say our tech picks lack pizzazz; they represent some of the most exciting technologies that are at the core of data center transformation, including solid-state storage, storage clouds, virtualization and data protection.
In 2013, we think a lot of data storage shops will sidestep spinning disk in favor of all-flash arrays -- the prices are plunging and the performance is jaw-dropping. Solid-state will also become a key tool for caching apps and data to help speed up hard disk systems.
Cloud storage services will figure prominently in many companies' disaster recovery (DR) plans, offering inexpensive virtual collocations and near-instantaneous recoveries. But as file share and sync services continue to proliferate, the cloud will also create a little stress for storage managers.
Nightlies and weeklies may disappear from many backup operations in the coming year as more companies turn to snapshot-based backups. And a lot of the data they'll be backing up will be stored on systems specifically designed for virtualized server environments.

All-flash storage arrays
With price the major obstacle to implementing solid-state storage, arrays packed exclusively with flash have taken time to catch on. But a bevy of startups offering lower prices have made all-flash arrays a reality, and acquisitions by storage giants could push them even deeper into enterprises in the coming year.
Simply put, the need for speed has created a market for flash systems. Top-tier, all-solid-state drive (SSD) arrays can deliver 500,000 IOPS to 1,000,000 IOPS, and even "second-tier" arrays offer 100,000 IOPS to 200,000 IOPS at a fraction of the price for a top-tier box.
"When you think of an all-SSD array, you're thinking about how you can pack the greatest amount of IOPS or storage performance into the smallest form and with the smallest investment," said Jeff Byrne, a senior analyst and consultant at Hopkinton, Mass.-based Taneja Group.
The cost of an all-SSD array is exorbitantly high on a dollar-per-GB basis, but the scales tip in its favor if dollars per IOPS is the measurement. So the best use cases for all-SSD storage arrays are environments that rely on applications requiring sustained high performance.
"Those would be things like data analytics, digital imaging, [virtual desktop infrastructure] VDI, database applications, financial trading systems and gaming websites," Byrne said. The applications also feature high transactional volume and highly random I/O, which justifies the all-SSD array high cost per GB.
All-SSD storage platforms have come from startups, including Kaminario, Nimbus Data, Pure Storage, SolidFire, Skyera, Tegile Systems, Violin Memory and Whiptail Technologies, among others. But they'll soon have company. EMC Corp. acquired XtremIO last May and plans to release its all-flash "Project X" system in mid-2013. And IBM is already in the market with a slate of all-flash systems it acquired when it bought Texas Memory Systems in August 2012.
Arrays from