Essay on Spectrophotometry

Submitted By Koweatay
Words: 877
Pages: 4

In chemistry, spectrophotometry is the quantitative measurement of the reflection or transmission properties of a material as a function of wavelength.[1] It is more specific than the general term electromagnetic spectroscopy in that spectrophotometry deals with visible light, near-ultraviolet, and near-infrared, but does not cover time-resolved spectroscopic techniques. Spectrophotometry uses photometers that can measure a light beam's intensity as a function of its color (wavelength) known as spectrophotometers. Important features of spectrophotometers are spectral bandwidth, (the range of colors it can transmit through the test sample), and the percentage of sample-transmission, and the logarithmic range of sample-absorption and sometimes a percentage of reflectance measurement. A spectrophotometer is commonly used for the measurement of transmittance or reflectance of solutions, transparent or opaque solids, such as polished glass, or gases. However they can also be designed to measure the diffusivity on any of the listed light ranges that usually cover around 200 nm - 2500 nm using different controls and calibrations.[1] Within these ranges of light, calibrations are needed on the machine using standards that vary in type depending on the wavelength of the photometric determination.[2] An example of an experiment in which spectrophotometry is used is the determination of the equilibrium constant of a solution. A certain chemical reaction within a solution may occur in a forward and reverse direction where reactants form products and products break down into reactants. At some point, this chemical reaction will reach a point of balance called an equilibrium point. In order to determine the respective concentrations of reactants and products at this point, the light transmittance of the solution can be tested using spectrophotometry. The amount of light that passes through the solution is indicative of the concentration of certain chemicals that do not allow light to pass through. The use of spectrophotometers spans various scientific fields, such as physics, materials science, chemistry, biochemistry, and molecular biology.[3] They are widely used in many industries including semiconductors, laser and optical manufacturing, printing and forensic examination, as well in laboratories for the study of chemical substances. Ultimately, a spectrophotometer is able to determine, depending on the control or calibration, what substances are present in a target and exactly how much through calculations of observed wavelengths.

Contents [hide] 1 Design 2 UV-visible spectrophotometry 2.1 Applications 3 IR spectrophotometry 4 Spectroradiometers 5 See also 6 References 7 External links

Design[edit]

Single beam spectrophotometer
There are two major classes of devices: single beam and double beam. A double beam spectrophotometer compares the light intensity between two light paths, one path containing a reference sample and the other the test sample. A single-beam spectrophotometer measures the relative light intensity of the beam before and after a test sample is inserted. Although comparison measurements from double-beam instruments are easier and more stable, single-beam instruments can have a larger dynamic range and are optically simpler and more compact. Additionally, some specialized instruments, such as spectrophotometers built onto microscopes or telescopes, are single-beam instruments due to practicality. Historically, spectrophotometers use a monochromator containing a diffraction grating to produce the analytical spectrum. The grating can either be movable or fixed. If a single detector, such as a photomultiplier tube or photodiode is used, the grating can be scanned stepwise so that the detector can measure the light intensity…